Timemory:

— S
il T .‘E Ny
,ak\ _ E« &"f Nt W,

Jonathan R. Madsen, Ph.D.
: Application Performan rgz
Fv " 3 - NN | Aug

Key Takeaways

1. Not “use X or timemory” - “use X via timemory”
(“...and arbitrarily add support for Y”)

2. Front-end library: optional, arbitrary to implement

3. Back-end library: highly modular and easily extendable

4. Tools are provided but is, first and foremost, a toolkit

“On_ e of

\ U.S. DEPARTMENT OF \ ‘\ | /
j ENERGY cience

Objective: Common Instrumentation API

- Abstractions to record performance serSide iien nsmumenaten

Interface Interface

data for a section of code or work- E : :
flow are a staple in HPC apps oy [T adapter [T T

Library ;| Adapter | !
* Issue: ™ OO
* Increase in multiple language apps Generic Instrumentation AP
* Increase in multiple architectures apps [' ScoreP |
* Result: L wr TAU |
. mprehensive analysis requires usin
ﬁﬂmﬁlee ool ondior }rlnultiplg Al s Eneray tner
* Supporting new language/architectures - ; [System monitoring
in abstractions tends to require Bostms, D, Huck, K A, Madsen, J, and Weidendorfer, J. Thu . "The Case

for a Common Instrumentation Interface for HPC Codes". United $ ites. N\

S|gn|f|cant re_Write https://www.osti.gov/serviets/purl/1574633.
U.S. DEPARTMENT OF Q\

YIB! ||

&2 BERKELEY LAB @ ENERGY oo 7

Bringing Science Solutions to the World

https://www.osti.gov/servlets/purl/1574633

Common Instrumentation Goals

* All common HPC languages * Minimal overhead
* Instrumentation and sampling - Extensible by application
- Data-sharing between tools - Wrap existing abstractions
* Local customization - Easy to support
- Optimal efficiency and optimal o Stable interface
flexibility implementations > In-house modifications do not

- Agnostic to input application require upstream propagation

» Agnostic to output by tools

1)
=_; (GERY, U.S. DEPARTMENT OF O kOf /
NERsC 4 il BERKELEY LAB @ ENERGY séiJfoe
Bringing Science Solutions to the World

Common Instrumentation Requirement

- Common convention for calling tools
1. Function pointers? Callbacks?
* Restricts invocation to specific function signature(s)
* Collecting phase data can be unwieldy
2. Dynamic Polymorphism?
* Restricts invocation to specific function signatures(s)
- Simplifies phase data collection > member data

* Always requires heap allocation

‘»« U.S. DEPARTMENT OF Q’L VL
& 4 ENERGY Science ¢

Common Instrumentation Problem

 Need methodology which abstracts types out of pattern(s)
for calling tools while preserving types

o Start/Stop + different input types:
* Host timer requires no input

« Stream-specific CUDA event timer requires cudaStream_t input
o Get + different return types:

« Trip-counter - returns integer

« Hardware counter - returns array of doubles

* Roofline - returns elapsed time paired with hardware counters

|

;‘7‘}‘%,‘5 U.S. DEPARTMENT OF ‘O.'\ f
@ ENERGY scsice

%] BERKELEY LAB
Bringing Science Solutions to the World

ot)

Common Instrumentation Solution

- Each tool wraps its behavior/requirements into struct(s)
o Static configuration data, local intermediate (phase) data, etc.

- Calling convention is member function names
o Functions are overloaded for supported input types
o Functions return any type

« Variadic template classes
o Bind tools together into tool-like struct
o Variadic member functions accept any input + deduce return type

o Manage metadata, other behavior (e.g. data-sharing)))
@ ENERGY <c:ho

NERsC - B BERKELEY LAB
Bringing Science Solutions to the World

Overview

() ()
component — C++ structs which encapsulate a measurement instance
. / . /
() (. .)
operation<T> = C++ structs which encapsulate how to perform the measurement in
L P J L different scenarios (different arguments, cached data available, etc.) J
(") (")
C++ struct which binds together components and maps components
bundle<T...> |= : .
L) L onto operations + broadcasts arguments to operations)
(\ (. . \
storage<T> = C++ struct which manages accumulation of
L) L persistent data and call-stack hierarchy J
4) Ve)
trait<T, ...> = C++ structs which encode properties at compile-time
. /
s < . /
settings = C++ struct which maps configuration to code accessors, 1
L) environment variables, command-line arguments, etc.

|

USDEARMNTO Ow e of

ME ENERGY Science

NEF 8 Tl BERKELEY LAB

Bringing Science Solutions to the World

Components

Components provide “tools”

O

O

©)

Member functions + overloads + type-traits - define capabilities
Reusable within other components (ideally)
Could implement other components

Could provide aforementioned:
. Callback System nstrumer;tahon Inter;face Inte:l'face
- Dynamic polymorphism 1 oy [adager [™
May be defined by external tool ® ® O [
Components

L

9 @il BERKELEY LAB

Bringing Science Solutions to the World

(‘) EN ER&OFY Sc:e

ce

Operations

« Operations provide “tool adapter”

o Handle member function invocation for given set of arguments
« Using SFINAE and/or tag dispatch

o Local customization via template specialization

o Usually require component instance ersige - Sommen | Teskepedte
] . Instrumentation API Interface Interface
o May provide function call operator 5 ; ;
. . . H Instrumentation < ‘ > Tool | » Tool
o Handle runtime disabling L [
Operations
NEFR 10 Bl BERKELEY LAB @) ENERGY s:crce

Bringing Science Solutions to the World

Bundles

- Bundles are the “instrumentation library”
o Zero or more components are template parameters

o Filter out components marked as “unavailable”
* Important for creating a portable handle to tools

- Bundles come in various flavors e
- Implicit start/stop via RAIl oo LTt L]
- Implicit/explicit interaction with storage o [oo
o Different component allocation schemes
- Heap, stack, mixed Bundles

)) |
Ow po¥)

;« U.S. DEPARTMENT OF f
& ENERGY scishce

%] BERKELEY LAB
Bringing Science Solutions to the World

Putting It All Together

Y. Y
struct Foo ?truct BT struct Yaz
Component : . {
Interface v0|d start() vo!d start(?, void sample();

PN N

bundle<Foo, Bar, Yaz> obj;

void start(int); y:
{ bundle<T...> ':> obj.start(10);

@ Variadic template unrolling
[operation::start<Foo>(Foo& f, int v);

operation::start<Bar>(Bar& b, int v);
operation::start<Yaz>(Yaz& y, int v);

{l SFINAE

f.start();
b.start(10);

[operation<T> —

Q‘) ENERGOFY TSDCIe:C?a

& BERKELEY LAB

Bringing Science Solutions to the World

12

Summary

* Flexible interface for creating handling multiple tools
without abstraction

 |deal for built-in performance analysis into your code

o Automatically support multiple tools
o Fully customize interface

o Developers and users can create custom components

R Y-S ‘D‘i. e 0F
3() ENERGY scichce

Acknowledgement

Authors from Lawrence Berkeley National Laboratory were supported

by the U.S. Department of Energy’s Advanced Scientific Computing
Research Program under contract DE-AC02-05CH11231.

This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

“Own_ e of
Science

Additional Information

- Back-up slides contain more information on:
o Data storage model, type-traits, settings
o Instrumentation in (more) detail
o Wrapping common instrumentation around external functions
o Python bindings
o Summary of existing pre-built tools
o Various other utilities
o Future Work
o Relevant Links
o Contact Information

(‘) EN ERGOFY Scnefce

%] BERKELEY LAB
Bringing Science Solutions to the World

Backup Slides

U.S. DEPARTMENT OF ofﬁce of

BERKELEY LAB (@ ENERGY | J™°

crcees

p——

Common Performance Analysis Paradigms

- Start / stop collecting metric around region

- Sample metrics at regular intervals

* Record event data within application

» Dynamic instrumentation

« Compiler instrumentation

* Accumulate or separate data per-process, per-thread
 Call-graph hierarchy

Office of

f&"'&«‘ U.S. DEPARTMENT OF
@@ ENERGY scionce

Performance Analysis APls

1. Tools provide APls
o VTune — ittnotify
o NVIDIA — NVTX
o Caliper, CrayPAT, gperftools, LIKWID, Score-P, TAU, etc.
2. Libraries provide tool APIs
o MPI - PMPI, MPI-T, OpenMP -> OMPT, Kokkos - KokkosP
3. Libraries provide built-in implementations of tool APIs
o AMReX has amrex::TinyProfiler (basic timing), CrayPAT, ARM-Forge,
NVTX, VTune, etc.

Common instrumentation simplifies #3 by generalizing #1 and providing
implementations for #2

Office of

J"‘}‘Lﬂ%“: U.S. DEPARTMENT OF
3() ENERGY Science

%] BERKELEY LAB
Bringing Science Solutions to the World

Proposal

« Use C++ templates to provide skeleton framework
o Performance analysis tools use common set of patterns

« Use C++ template metaprogramming to:
Unify dissimilar interfaces
Accommodate different data storage requirements
Minimize abstractions and/or opaque data types (i.e. void*)
Eliminate any runtime logic available at compile-time
+ Use C++ variadic templates to:
o Support creating a single type which controls multiple tools
o Provide functions which can receive any inputs

©)
©)
©)
©)

Office of

f'/ﬂc«‘ U.S. DEPARTMENT OF
%< ENERGY Science

Timemory

e Storage

e Traits and Settings
e Example

U.S. DEPARTMENT OF ofﬁce of

=1 BERKELEY LAB @ ENERGY | J1ee

Storage

Singleton per component which
handles tracking the persistent data
o Unique to each thread and/or
process
o No synchronization locks or
communication overhead outside of
construction and destruction
o Secondary instances get merged into
primary during finalization
Supports intermixed layouts: tree, flat,
timeline, tree-timeline, flat-timeline
Writes to various output formats
o JSON, XML, text, binary, flamegraph
o More can be supported

21

Depth =0

Depth =1

Siblings

Depth = 2

Call-graph per component. Each node is keyed to a label (e.g.,
function name, file, and line number) and contains an instance of
the component. The component instance within the call-graph
provides data-storage only.

Ad, U.S. DEPARTMENT OF Offlce Of

&) BERKELEY LAB @ ENERGY Sione

Bringing Science Solutions to the World

Traits and Settings

* Traits customize behavior, optimize performance,

add/remove features
o {start,stop} priority, uses_{timing,memory} units, statistics,
derivation_types, cache, python_args, uses_storage, etc.
« Settings handle mapping runtime configuration variables

to environment variables, command-line arguments
o tim::settings::enabled() [C++]
o timemory.settings.enabled [Python]
o TIMEMORY_ENABLED [environment variable]
o --timemory-enabled=off [command-line argument]

Office of

;"&%‘g U.S. DEPARTMENT OF
@@ ENERGY scionce

Example

TIMEMORY_DECLARE_COMPONENT(Foo) namespace tim { namespace component {
TIMEMORY_DEFINE_TRAIT(flat_storage, component::Foo, true_type) struct Foo : base<Foo, int64_t>
TIMEMORY_DEFINE_TRAIT(uses_timing_units, component::Foo, true_type) {

TIMEMORY_DECLARE_COMPONENT(Bar) void start();

TIMEMORY_DEFINE_TRAIT(start_priority, component::Bar, void stop();
priority_constant<1l>) double get() const;
TIMEMORY_DEFINE_TRAIT(stop_priority, component::Bar, };

priority_constant<-1>)
TIMEMORY_DECLARE_COMPONENT(Yaz) struct Bar : base<Foo, std::vector<double>>
- T {

TIMEMORY_DEFINE_TRAIT(is_available, component::Yaz, false_type) .
P void start(cudaStream_t);

TIMEMORY_DECLARE_COMPONENT(Egg) void stop(cudaStream_t);
TIMEMORY_DEFINE_TRAIT(uses_storage, component::Egg, false_type) std: :vector<double> get() const;
3

e Four components: Foo, Bar, Yaz, Egg f{t"“Ct Egg : base<kgg, void>

e Foo always |mpleme.nt§ flat storage void start(int):

e Bar has start/stop priority void stopQ);

e Yazis unavailable };

e [Egg does not use storage +

U.S. DEPARTMENT OF Ofnce Of

EN ERGY Science

22| BERKELEY LAB

Bringing Science Solutions to the World

using bundle_t = tim::component_tuple< using bundle_t = tim::component_tuple<
Foo, Bar, Yaz, Egg>; Foo, Bar, Egg>;

Usage Implementation
void spam(cudaStream_t stream) void spam(cudaStream_t stream)
{ {
bundle_t obj("spam™); auto _hash = get_hash("spam");
obj.start(stream); Foo f;
// ... Bar b;
obj.stop(stream); Egg e;
auto ret = obj.get(); operation::insert_node(f, _hash, scope::flat{});
} operation::insert_node(b, _hash, scope::tree{});
e Yazis implicitly removed from bundle_t ; zzg:g ir‘eW via operation::start<T>
e Foo, Bar, and Egg created on stack W
e Only Foo and Bar insert into storage b.stop(stream);
e Foois started w/o args f. stop();i/\ via operation::stop<T>
e Baris started with stream arg e.stop(Q);
e Egg does not provide compatible start operation: :pop_node{f};
e Bar has priority — stops first operation: :pop_node{b};
i auto ret = std::make_tuple(
e Foo, Egg stop according to template order f.get(), b.get());
e Foo, Bar add themselves to storage node 3
e obj.get() translates to tuple of types w/ non-

void get() member function
NEF 24

U.S. DEPARTMENT OF Ofnce Of

& BERKELEY LAB ENERGY | science

Bringing Science Solutions to the World

What else does timemory provide?

U.S. DEPARTMENT OF ofﬁce of

| BERKELEY LAB @ ENERGY | Siee

Instrumenting External Functions

- Simple function wrapping and replacement via GOTCHA

o Wrap N functions in ~N+3 lines of code
« Templates will automatically extract return-type and arguments
* Macro for unmangled (extern “C”) functions
* Macros for mangled (extern “C++7") free-, member-functions

o Supports auditing arguments and return value

o Reference counting — scoped function wrapping/replacement

struct mpip {};
using toolset_t

using mpip_gotcha_t = component::gotcha<246, toolset_t, mpip>;

= component_tuple<component::wall_clock>;

26

TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,
TIMEMORY_C_GOTCHA(mpip_gotcha_t,

22| BERKELEY LAB

Bringing Science Solutions to the World

, MPI_Gather);

, MPI_Gatherv);

, MPI_Get);

, MPI_Get_accumulate);

, MPI_Get_address);

, MPI_Get_count);

, MPI_Get_elements);

, MPI_Get_elements_x);

, MPI_Get_library_version);
, MPI_Get_processor_name);
, MPI_Get_version);

, MPI_Graph_create);

5 U.S. DEPARTMENT OF

< , ENERGY Science

Office of

ools

* Numerous pre-built command-line tools are provided
o timem — combines UNIX time + rusage + HW counter
o timemory-run — dynamic instrumentation via Dyninst
o timemory-avail — provides component info, available settings, available
HW counters
* Numerous pre-built instrumentation libraries are provided
o timemory-mpip — wraps MPI calls with runtime selection of components
and tracks comm data sizes
o timemory-ncclp — wraps NCCL calls with runtime selection of components
and tracks comm data sizes
o timemory-ompt — implement OMPT with runtime selection of components
- kokkosp timemory* — generic and dedicated implementations of the
KokkosP interface

Office of

f'/ﬂc«‘ U.S. DEPARTMENT OF
g ENERGY Science

27

Python

- Extensive Python bindings are provided
o Settings
o Decorators, context-managers
o Python profiling (per-function), tracing (per-line)
o Control over instrumentation libraries
o Python classes for bundles
o Generic plotting, roofline plotting
- Every enumerated component gets standalone Python class, e.qg.
o timemory.component.PapiVector
o timemory.component.CuptiActivity
o timemory.component.CaliperMarker

« Common workflows for CI

Office of

;« U.S. DEPARTMENT OF
& ENERGY science

%] BERKELEY LAB
Bringing Science Solutions to the World

Utilities

« CMake INTERFACE libraries for various flags, libs
- Empirical roofline toolkit (ERT)

« Argument parser similar to Python argparse

- Embedding Python interpreter

« Subprocess piping utilities

« Conditional instrumentation

« String concatenation

+ Signal handling and sampling

* Generic source location class

» Platform-agnostic environment get/set templates

- STL container overloads for arithmetic and statistics

Office of

fﬁ“'%,z U.S. DEPARTMENT OF
@@ ENERGY scionce

Summary

U.S. DEPARTMENT OF Ofﬁce of

=1 BERKELEY LAB @ ENERGY | J1ee

Summary (1/3)

 Toolkit for building performance analysis tools
o Use timemory-provided tools and libraries to perform analysis
with timemory-provided components
o Use timemory API to implement custom high-level performance
monitoring system
o Use timemory API to supplement timemory-provided tools with
custom components
o Build custom tool or library with timemory as backend
o Build custom Python tool with timemory standalone components
« Components

o Optimal invocation of one measurement / usage

Office of

fﬁ“'%,z U.S. DEPARTMENT OF
@@ ENERGY scionce

Summary (2/3)

Operations provide:
o Ability to specialize behavior for a given set of arguments
o Use SFINAE to handle support for operation and/or arguments

- Bundles broadcast arguments to operations and provide
common interface to components with different
features/capabilities

« Storage is optional feature and simplifies aggregation over
multiple processes and multiple threads

« Type-traits encode properties and features at compile-time

« Settings provide mapping between environment variables,
code accessors, and command-line arguments

Office of

f'/ﬂc«‘ U.S. DEPARTMENT OF
%< ENERGY Science

Summary (3/3)

- Powerful, easy-to-use GOTCHA extensions
* Numerous command-line tools and instrumentation
libraries are provided

- Python interface provides:
o Timemory runtime
o Toolkit of components for building Python tools
o Visualization utilities

« Miscellaneous utilities for common performance analysis
tool requirements

NERsC 33 &) BERKELEY LAB @ ENERGY <icne

e Future Work
e Relevant Links
e C(Contact Info

U.S. DEPARTMENT OF ofﬁce of

=1 BERKELEY LAB @ ENERGY | J1ee

Future Work

* Planned
Compiler Instrumentation
Score-P, CUPTI Profiler API, OpenCL, ROCprofiler, ROCtracer
Additional serialization formats (e.g. YAML, CUBE, etc.)
Jupyter notebooks
NERSC Iris + SLURM Integration
Components which perform analysis of other components
Produce recommendations/hints w.r.t. bottlenecks
- Potential
o LLVM X-ray Support
o Generic LLVM pragma implementation

O O O O O O

Office of

f&y%‘g U.S. DEPARTMENT OF
@@ ENERGY scionce

Relevant Links

« Journal Article

Madsen, J.R. et al. (2020) Timemory: Modular Performance Analysis for HPC. In: Sadayappan P., Chamberlain B.,
Juckeland G., Ltaief H. (eds) High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer
Science, vol 12151. Springer, Cham

« Source code
o github.com/NERSC/timemory
* Documentation
o timemory.readthedocs.io
* Tutorials
o github.com/NERSC/timemory-tutorials
- Package Managers

o Available via Spack, PyPi
o github.com/NERSC/timemory/wiki/Installation-Examples

Office of

N0 ‘,,,\‘ Ly
36 \” &Y EN ERGY Science

https://www.researchgate.net/publication/342185726_Timemory_Modular_Performance_Analysis_for_HPC
https://github.com/NERSC/timemory
https://timemory.readthedocs.io/en/develop
https://github.com/NERSC/timemory-tutorials
https://github.com/NERSC/timemory/wiki/Installation-Examples

Contact Info

* |If you are interested in:
o Integrating timemory into your performance analysis workflow
o Contributing a component for your tool
o Hands-on tutorial
o Feature request

please send an email to rmadsen@lbl.gov or create an
iIssue on GitHub

Office of

J"‘}‘Lﬂ%“: U.S. DEPARTMENT OF
3() ENERGY Science

%] BERKELEY LAB
Bringing Science Solutions to the World

mailto:jrmadsen@lbl.gov
https://github.com/NERSC/timemory/issues

